Laboratory Studies of Primordial Chemistry and Implications for First Star Formation

Daniel Wolf Savin

Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027, USA

Abstract.

During the epoch of protogalaxy and first star formation, H_2 was the dominant coolant for collapsing primordial clouds at temperatures below 8,000 K. Hence, a reliable model of H_2 formation and abundance is critical for our understanding of structure formation in the early Universe. The dominant H_2 formation mechanism during this epoch is initially the associative detachment (AD) reaction $H^- + H \rightarrow H_2 + e^-$. There are a number of reactions, however, which limit the H^- abundance available to form H_2 . One of the most important of these is the mutual neutralization (MN) reaction $H^- + H^+ \rightarrow H^+ + H^- + H^-$